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l. -al 

SigniBcant progress has recently been made toward establishing hov global 

damr symmetries are realized In vectorllke gauge theories. hke QCD. For 

example, lf quark condnement is assmned. then we may invoke ‘t Hooft’s eno 

maly argument [I] and mequahties similar to those derived by Weingarten [z] 

end Vafa and Witten [3], along with some mild technical assumptions, to show 

tbat the su(Tt)L x su(TL)R x U(1) y chid symmetry of QCD with n massless 

quark &won is spontaneously broken to the ti noncbiral subgroup 

SY(n)v x U( 1)~. ‘I?& demonstration is an important achievement for QCD. since 

such a realixation of global chiral symmetry is actually observed in Nature. 

It is also of considerable interest to determine how global ilavor symmetries 

are realized in theories which are not vectorlike. but chiral; theories in which 

the gauge symmetry forbids masses for at least some of the elementary fer- 

miens. It has been suggested that many such “chiral gauge theories” contain 

massless composite fermioos [4,5]; physics well below the Planck scale might 

conceivably be described by an eLlectiw chirel gauge theory in which quarks 

end leptons are composite and their masses are calculable. Unfortunately, very 

little is known about the behavior of chiral gauge theories beyond perturbation 

ttE.0~. 

The central theoreticai problem concerning chiral gauge theories which we 

wish to address ten be formulated as follows: Consider an asymptotically free 

gauge theory with gauge group G and with massless left-handed Weyi fermioos 

transforming as some complex representation of G. If the fermion representa- 

tion is reducible, then this theory respects a group G, of global flavor sym- 

metries. We wish tc know how the Cl symmetry is realized. This question has 

two parts: 
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(1) What s&group HI of G, escapes spontaneous symmetry breakdown? 

(2) What is the repmsentauon content under HI of the maasless fermions in the 

spectlwn of the tlwory-? 

Tha massless femions may be either composite or elementary. for the G 

gauge interaction may or may not be exactly confming; if. for example. the 

gauge group G ls sponbneously broken to a subgroup H. massless elementsry 

fermions may appear In the spectrum which are H singlets but not G singlets. 

Indeed. ending the realization of the gauge symmetry is itself a very important 

dyusmicai problem 

To determine the realization of the gauge symmetry and global flavor sym- 

metry. we must have some knowledge about the intrinsically oonperturbative 

physics involved An important step was taken by ‘t Hooft [I]. who argued that 

the messless fermions in the spectrum ol the theory must obey a remarkable 

algebraic condition; they must produce the same triangle anomalies for the 

unbroken Lamar group H, as the elementary fermions. This reasoning esta- 

bhshed that massless fermions am a necessery consequence of unbroken chirai 

symmetry. If there is a generator t of the unbmken davor group H, such that 

Is p # 0. then them must be physical massless fermions that couple to the asso- 

ciated current. Furthermore, the anomaly condition places constraints on the 

HI mpmssntation content of the IMSI~SS fermioas that. in a combing theory. 

am highly nontrivial. because composite fernnons must typically be in different 

representations of HI than the elementary fermions. 

The anomaly condition alone, however. does not uniquely determine the 

realization of the global G, symmetry, even if exact confmement is assumed. 

Further information is needed In vector-like theories like QCD. this information 

can be obtained in various ways. As noted earlier, the realization of the chiral 

symmetry of WI can be determined. if contlnement is assumed, by appealing to 



the QCD in~uellttes [2. 31. Unfortunately, analogous inequalities have not been 

derived for chiral gauge theories. Nonperturbative information about QZD ten 

also be obtalned by doing numerical calculations in lattice gauge theories. But 

them em tech&al obstacles which make it dimcult even to formulate chiml 

gauge theories on the lattice. (A possible means of surmounttng these obstacles 

is discussed by tvvo of us in Ref. [6].) 

Another approach to studying the nonperturbative behavior of QGD is the 

expansion in l/N. where N is the number of colors [7]. If quark cotiement is 

assumed $I apply in the N + - limit then a surprising number of qualitative 

features of meson phenomenology ten be derived in this approach [7-lo]. lhe 

l/N expansion can also be applied tc the problem of fInding the realization of 

global flavor symmetry. Given cor&nement and some technical assumptions it 

can be shown. wtthout invoking QGD inequalities. that the cbirsl symmetry of 

QGD with n massless quarks is spontaneously broken to SU(n)r x U(l)” in the 

knit N * - [ll]. 

Our aim in this paper is to determine. as far as possible, the mahxation of 

the global flavor symmetries of verious chid gauge theories in the limit N + a. 

We restrict our attention. of course, to theories which remain asymptotically 

free as N - -; thus, all fermions he in one of the irreducible representations 

S. A. or F (or their complex conjugates) of the gauge group ST(N). Here S 

denotes the symmetric twc-index tensor, A the antisymmetric two-index tensor, 

and F the fundamental representation of the group SU(N). (In principle, the 

adjoint representation is also allowed even though it is real. if we define a chiral 

gauge theory as one in which masses for some. but not necessarily& of the eie 

mentary fermions am forbidden by the gauge symmetry.) 

We have reached ho main conclusions. F’irst. we have found that. if we 

assume the existence of an N + - limit given by a sum of planar diagrams, and 



also assume confinement (ah physical states are SU(N) singlets). then there am 

models which necessarily mspect unbroken chiral symmetries, and contein 

massI~s composite fermions. In the N + - limit This is the strongest argument 

we know that massless composite termions can mally exist. lhe key point is 

that them will be massless composite termions unless ell global davor sym- 

metries with anomalies are spontaneously broken. Associated with each span- 

taneously broken symmetry is a Goldstone boson state which must be able to 

appear as an Intermediate state in cut planar diagrams. But for some chiral 

symmetries with anomalies. we 6nd that them is no candidate gauge-smglet 

Goldstone boson available in the N - - Unit. Thus. the symmetry is unbroken, 

and them am massless composite termions. 

Our second main conclusion is that there are models in which the hvo 

assumptions underlying our first main conclusion am incompatible; either 

conbnement. or the existence of an N + - limit dominated by planar diagrams. 

or both must fail. In these models, them are cbirai symmetries with anomalies 

for which neither a candidate gaug-inglet Goldstone boson nor a candidate 

multiplet of massless gauge*inglet composite termions occurs in the cut pLanar 

diagmms. Thus, no possible realization of these symmetries is consistent with 

our assumptions. In previous papers [ 12, 131, we have considered realizations of 

the global Barr symmetries of such models that am consistent with 

conbnement. at the expense of the existence of a conventional large N limit. It 

actually seems more plausible to us, though that confinement ia the incorrect 

assumption. and that the gauge symmetry is realized in a Higgs or Coulomb 

mode. 

Although our second main conchsion may appear at f3rst to undercut the 

assumptions which were the basis of our first main condusion. such is not really 

the case (as we will argue in the conchding section). Rather, our second 



conclusion provides the strongest argument known to us that them are some 

chlral gauge theories which bmak their own gauge symmetry. And our hmt con- 

clnxion provides h&hly persuasive evidence that certain other chiral gauge 

theories really do contain massless composite fermions. 

In Section 2. the N - - knit of QCD is mvliewed. ChIraI gauge theories 

which em likely to contain massless composite termions am analyzed in Sac- 

Uons 3 and 4. and a nonconfining chiral gauge theory is discussed in Section 5. 

Section 6 contains our conclusions. 

Before turning to examples of chiral gauge theories. let us briefly review the 

analysis of the large N behavior of QCD. a wcto&ike theory. 

QCD is an SU(N) gauge theory coupled to left-banded Weyl termions 

(querlm) that, in the notation introduced earlier, transform under the SD(N) 

(color) group as 

n(F + T): (23 

hem F signifies the fundamental representation of ST(N) and 7 its conjugate. 

The l/N expanslon ls carned out with gsN t3xed and tien to be order one, 

where g is the conventionally normalized gauge coupling. 

Counting the powers of N associated with a given Feynmsn diagram is facik 

tatcd by ‘t Hook’s double line notation [7]. in rhich the SD(N) gauge theory is 

approxfmated by a U(N) gauge theory, and gluons are represented by two lines 

of opposite orientation each carrying an index which runa from 1 to N. (See 

Figure 1). In this notation each closed “index loop” of a diagram indicates a fac- 

torofN. 



With every connected vacuum bubble d&mm. we may associate a twe 

dimensional surface. mgerding each index loop as a face of the surface. each 

gluon propegator as an edge whem two faces meet, and each quark propagator 

as an edge where only one face ends, part of the boundary of the srpiace. A 

graph with F faces. E edges. end Y vertices carries F powen of N and 

L - 1 = E - Y powers of 3, where L is the number of loops contained in the 

diagram (that is. the number of tndependent momentum i.ntegrals. not the 

number of index loops). Thus, this graph scales like 

Graph N Nf-g+v (gsN)g-y (2.2) 

With gsN considered of order one. we see that the number of powers of N car- 

rled by the graph turns out to be a topological Invariant of the surface on which 

the graph can be drawn the Euler characteristic x = F -E + V. By a well- 

known theorem of topology, we obtain x = 2 - 2H - B. and 

Graph - Nst-sx-B, (2.3) 

whom H is the number of ‘handles” on the surface and B is the number of 

“holes” or boundaries, that Is. the number of quark loops. Evidently. in the 

N + - limit with gsN fIxed. the “planar” vacuum diagrams dominate: these am 

the diagrams containing nc quark loops which can be drawn on a sphere. without 

any crossing of gluon lines. The contribution due to graphs with one quark loop 

is suppressed by one power of l/N; “nonplan&’ gluon exchanges are 

suppressed by lf fl. 

It has not yet proved posstble to sum the planer diagmms and determine 

the leading contribution in the l/N expansion But a surprising number of qual- 

itative properties of the N + - limit can be extracted if we make the plausible 

assumption that color is conftned in this limit; that is. that all physical states 



am color singlets [7-lo]. The physics of the theory can then be probed with 

Gmen’s CuncUons of gauge-invariant composite operators. For example, con- 

sider 

(9.4) 

a generic color singlet meson operator, appropriately nonnahsed to couple with 

strength of order one to a color-singlet state. (The index i is a color index run- 

ning from 1 to N. n and b are flavor indices. and spin indices have been COP 

tracted in an tmspecifled way.) The leading diagrams as N - - contributing to 

the connected k-point function for dl have one quark loop which is the boundary 

of the graph and are of order N’-a’*. It follows that. in the leading order of the 

l/N expansion. the operator If couples only to one meson states. end that the 

mesons am noninteracting [7. lo]. The leading k-meson scattering amplitude, of 

order N’-k’2. is a sum of pole terms (tme graphs). ‘Ihis analysis is readily 

extended to incorporate glueball states (the k-meson l-giueball amplitude is of 

order N’-“‘-’ fork # 0. N’-‘ fork = 0) and one concludes that QGD becomes, 

In the N + - limit. a theory of an inbite number of noninteracting zerwvidth 

mesons and glueballs. (The number of states must be intlnite. in order for the 

Green’s functions to behave at large momentum M predicted by 

renormalization-group-unproved perturbation theory.) 

While the conclusion that dd couples only to one-particle states follows from 

just the scaling properties as N - - of the dl Green’s functions, it is instructive 

to note that this conclusion is reinforced by an argument based on the structure 

of the planar diagrams [a. 91. Whenever a planer diagram is cut, the intermedi- 

ate state that occurs contains a quark-antiquark pair and some number of 

gluons with color indices contracted as 

PJ’4 A 5ir .., Jy F’S, 



(See Rg 2.) This state consists of a single system of color-singlet particles: Lt 

cannot be spbt Into tm or mom color?inglet states. Thus, U color Ls confined. 

the intermediate state must be a perturba~ve approsimatlon to a one-particle 

state. not a multiparticle state. One concludes again that Y couples only to 

one-particle states in the N 4 - Umlt. 

In the N + - limit, QCD with n massfess quark tlavors has a U(n), x U(n), 

global davor symmetry. (The effects of the axial anomaly am not felt until the 

next-to-leading order in the l/N expansion.) If conllnement is assumed. it 

immediately follows that this symmetry must be spontaneously broken to an 

anomaly-free subgroup [ll]. The ‘t Hooft anomaly condition requires that. if 

them is a flavor symmetry generator that has an anomaly and is not spontane- 

ously broken, then the corresponding current must couple to a pair of masslcss 

termions. But, in the N -t - Umir awumiug’conUnement. all quark bihneers 

couple only to one-meson states. 

That ths unbroken symmetry is actually the diagonsl U(n), can be inferred 

from a few additional mild essumptions (and without invoking QCD inequalities). 

The pattern of symmetry breakdown is characterized by a nonserc value for 

some gauge-invariant parameter. or “condensate.” Since all mesons are quark- 

antiquark states. any Goldstone bosom are such states. and the condensate. to 

which Goldstone bosons must couple, may be regarded as a quark bilinear. The 

value of the condensate is determined by m&omL&g some potential. obtained 

by summing an intlnite number of connected planar diagrams. But each 

diagram contains a single quark loop, so the potential can be written as a sum of 

terms. each involving a single quark davor. lhe potential is minimized by 

minimztng it for each quark flavor separately, and therefore the minimum 

retains the U(n), havor symmetry. We conclude that the 1 noncbiral 

favor symmetry U(n),. is unbroken [II]. 



A similar conclusion can be obtained by appealing to QCD inequalities. pro 

tided, ageln that conhnement is wsumed. According to ‘t Hoott’s anomaly 

argument [l], there must be mesatess termions coupling to the axial tlavor 

currents if the associated flavor symmetries ere not spontaneously broken If 

all physical states am color-singlets. then these massless fermions cannot be 

quarks they ere beryons. But rigorous inequalities similar to those derived by 

Welngerten [2] and Vafa and Witten [3] show that the lightest pseudoscalar 

meson (the pion) is nc heavier than the lightest bat-you ‘thus. the pion must be 

msssless. and. barring the possibility that 1. “accidentally’ vanishes. it is a Gold- 

stone boson The m(n), x sv(n)R x u(l), chid s)mmetry is theretom spou 

taneoualy broken and QCD inequalities ten be invoked tc determine that the 

unbmken symmetry must be SU(n)y x U(l), [3]. This argument is readily geu 

erahsed to show that, in vector-like gauge theories, global ddvor symmetries am 

always spontaneously broken to \ nonchiral subgroups. 

Although the argument based on QCD inequalities applies for any N. we Bnd 

the argument based on the l/N expansion mom useful for our purposes, 

because it is mom easily generalized to chiral gauge theories. 

If the N + - limit is taken with the number TL of quark davom held &ed. 

then QGD becomes a theory of an infInite number of noninteracting zerc-width 

mesons and glueballs. But it is else interesting to consider the N + 0~ limit with 

n/N held tied: that is. with the number of quark flavors of order N [a]. In fact, 

we will see later that the meson phenomenology of some chiral gauge theones 

resembles that of QCD with order N davors. 

For n/N of order one, a typical diagram contributing in leading order to 

the connected k-point Green’s function for the meson operator M is planar. but 

contains many termton loops: all the 61 insertions occur on a single loop, rbich 

may be taken to be the edge of the diagram. (See Figure 3.) The color factor 



l/N exooiated with a fermian loop IS compensated by the n-fold davor degerr 

eracyofthe loop. 

The same counting as before shows that tbn k-meson amplitude ia of order 

NIJ”. But the mesons nonetheless acquire bite widths. The rate for the 

decay of a meson resonance into k-1 mesons is of order one. because the order 

p-0 davor degeneracy of the tlpal meson state compensates for the smallness 

of the amplitude. (See Fig. 4a.) Only the massless mesons, the Goldstone 

bosone of the epontaneouely broken davor symmetry, ere exactly stable. and 

these mesons am noninteracting. (The two-meson total cmss section is of order 

l/N.) If n/ N ia small but non-zero [a]. then there is an imhite tower of meson 

resonances with typical widths of order n/ N. end a tower of glueball states with 

typical widths of order (n/ N)s (F’ig. 4b). 

In the N - - limit of QCD with n/N of order one. the davor symmetry is 

W(n), X SU(n), X U(l)“; the edects of the anal anomaly cannot be ignored. 

Although quark loops are unsuppressed for n/N of order one, it is still true that 

querk bilinears do not couple to baryon-antibaryon pairs in the N - - limit; they 

couple only to multi-meson states. We may therefore conclude as before, if 

confkement is assumed. that the global !3avor symmetry must be spontaneously 

broken to an anomaly-free subgroup. However. because connected graphs mth 

many fermion loops occur, we cannot argue as before, without invoking QCD ine- 

qualities. that the diagonal subgroup SlJ(n)” x U( 1)” must be unbroken. 

3. AchirelGa~nlegwith~~Com~teFermi0n.e 

As a 5rst example of a chiral gauge theory we consider a model with gauge 

gmup SU(N) and left-handed Weyi fermions transforming under SlJ(N) as the 

representation 

S + (N + 4) 7, (3.1) 



a symmetric tensor and (N + 4) R’s, l%s number N + 4 is chosen to cancel the 

SU(N) gauge anomaly. 

This model respecm a global davor symmetry 

G,= SU(N + 4) x U(1); (3.2) 

the SU(N + 4) mixes the diderent F flavors, and the U(1) is that combination of 

S number and p number, with charges 

4F=N+4 4 = -(N + 2). (3.3) 

which survives in the presence of SU(N) instantons. We would Like to determine 

how this symmetry is realized in the N + - limit, assuming exact confmement 

The N . - knit is dominated by planar diagrsms. but both S loops and F 

loops are unsuppressed. The S propagator, like the gluon propagator. carries 

two color indices, and the color factor l/N associated with an F loop is compen- 

sated by the (N + 4)-fold baoor degeneracy. Thus. the meson phenomenology of 

this model resembles that of QCD with order N davors. discussed in the last set- 

tion Them are glueball resonances and meson resonances coupling to the bil- 

inears PIP and StS, but all but the bghtest rtates can decay into light F(F 

mesons at a Unite rate. All meson and glueball scattering cross sections vanish 

inthaN+-Ihit 

In its “beryon” phenomenology. however. this model departs greatly from 

the behavior of QCD. There are composite fermions with the quantum numbers 

of 

Bd = &. sir Fj3 (3.4) 

which are not decoupled from the meson physics. (Here i. j are color indices 

running~m!toN.andabare&avorlndicesr~h-om?toN+4.)The 
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lntermedlato states BB’ CM occur in cut planer dfegrems (Fig. 5). Thus. meson 

and glunball rwonnnces can decay into the SST chennel with rates of order one. 

If there ore massless baryons (end there are - see below) we expect u mesons 

end gluebells with nonrem mass to have finite widths for N - -: the only stable 

pertlcles in the spectrum of the theory are the messlees baryons. and the mass- 

less mesons, if any. Excited bexyon resonances can decay to the massless 

beryoos by emission of Pr mesons. And the baryons am noninteracting; ah 

scattenng amplitudes venish in the N + m limit. 

To see that the spectrum of this theory redly contains massless composite 

fermions (essuming condnement). we now consider the realization of the global 

Cl symmetry If the G, symmetry is completely unbroken then them are four 

flavor anomaly conditions which must be satisfled - there are SU(N + 4)s, 

SU(N + 4)*U( 1). U( l)s, and U( 1) (“gravitational” [ 141) anomalies. All four condi- 

tions impose nontrivial constmlnts on the Uavor quantum numbers of the mass- 

less composite fermions. but they admit a remarkably simple solution [5]. A 

state coupLug to the operrdr 8.. ant’ . etrized in its tlavor indices. haa 

U(1) charge & = - N. and ia readily found to pmduce davor anomalies rhch 

match those of the elementary fernuons S and r. 

This solution to the anomaly conditions is so natural and appeehng that it is 

wry tempting to conjecture that the G, symmetry is actually realized in this 

way, that G, la completely unbmkan and that them are i (N + 4)(N + 3) mass- 

less fermions transforming as the antisymmetric tensor representation of davor 

SU(N + 4). with U( 1) charge Q = - N. In fact, if ne assume con5ement and the 

existence of an N - - limit dominated by planar diagrams, we can reach a con- 

clusion nearly.this strong. The point is that, in the N + - limit, the global U( l)o 

symmetry cannot be spontaneously broken. and the o&y composite fermons in 

the spectrum have U(1) charge 4 = - N. Since the L‘(l)s and U(1) anomalies 



- 13 - 

are -i @(N + 4)(N + 3) end - $ N(N + 4)(N + 3) respectively. we know that 

4 (N + 4)(N + 3) of the ferndons must be massless. 

To argue that the U(l)q symmetry remains unbmken we consider candi- 

date order parameters which could signal the spontaneous breakdown of this 

symmetry. If a gauge-invariant operator with nontrivial flavor quantum 

numbers condenses. then there must be a Goldstone boson which couples to the 

condoneate, and appears in the spectrum of the theory. (That is the Goldstone 

boson couples to the “lrnag~’ part of the operator whose “reel” pert con- 

denses.) Thus, I an operator is tn condense in the N - - limit. we demand that a 

state with the quantum numbers of that operator appears in the cut planar 

diagrams. This requirement. along with contlnement (the operator which con- 

denses must be a gauge-singlet), greatly restricts the possible realizations of 

the flavor symmetry. 

The key feature of the cut planar diagrams is that, along the cut, an index 

Ilne pointing out through the cut is always followed by one pointing in It is thus 

easy to see that the only color singlet states with LJ(l)g charge that ten occur in 

the cut planer diaqramz are the baryon state B. the antiberyon Bt. and multi- 

baryon states constructed from them. Furthermore, nhile a beryon-entibaryon 

state BBt can occur, a two-bupn state BB cannot (Fig. 6). (We should not 

expect BB to condense anyway. because the baryom are noninteracting.) We 

conclude that. if the only allowed condensates are Lorentz-sir&et gouge-se!et 

operators which appear as intermediate states in cut planar diagrams, then 

there is no candidate condensate to break the U(l)o symmetry: this symmetry 

must be unbroken 
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As we have noted, the unbmken U(l)0 symmetry ensures the existence of 

i (N + 4)(N + 3) massless composite fermions. But we cannot argue that the 

SJ(N + 4) flavor symmetry is unbroken. however plausible this may seem. 

without making further essumptions. Comlnement and the existence of an 

N - m limit dommated by planer diagrams do not, in prmciple, exclude the pos- 

sibility that an operator with the davor quantum numbers of z”‘r, condenses. 

(A borer&z-singlet operator with this structure is. for example. F y,, T D, P. 

where G is the gluon fleld.) It is even possible for several such condensates, 

misaligned, to break the SLJ(N + 4) symmetry completely. 

Arguments identical to those above can be used to show. assuming 

confinement, that an 5X’(N) gauge theory with fermions transfcrmmg as 

A+(N-4)F 

contains i (N - 4)(N - 3) massless composite Cormions in the limit N - a. 

In this section we investigate the behavior of several more cbird gauge 

theories In the N + m limit. We assume, as before, that the gauge interaction is 

exactly cor&ing 
-: 

flJ The Bars-Yankielowicz Model 

Bars and Yenkielowicz [IS] proposed a generalization of the model dis- 

cussed in Section 3. Their model is an FE(N) gauge theory with left-banded Key1 

formions transforming under SU(N) as the representation 

S + (N + a)F + T-L@ + F); (4.1) 

that is. the same representation as before, except for a vector-like piece 

appended on. 
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This model respects a group of 6avor symmetries 

G,= SlJ(N + 4 + n) x SU(n) X u(1) X u(i). (4.2) 

In Ref. [15], a remarkably beautiful solution to the anomaly conditions was 

found. AII G, anomaly conditions are sat&fled by the set of color-singlet compcr- 

site formions 

FSF c P'S'F + P'SF'. 

transforming as the representation 

(El 1) + (E. 0) + (1.W 

(4.3) 

(4.4) 

under the SU(N + 4 + n) x SU(n) Uavor symmetry. 

Unfortunately, in the N + - limit with n held fixed. this realization of the G, 

symmetry is not possible. Because an P lcop costs a factor of I/N. the fl.Sfl 

fernsions do not appear in the leading cut diagrams, and the G, symmetry must 

break. An argument similar to that applied earlier to the case of QCD shows that 

the SU(n) symmetry of the F’s should remain unbroken. Therefore. the R F’s 

must condense with n of the r-s. leaving the unbroken symmetry 

H,= SU(N + 4) x SU(n) x U(1) x U(1). (4.5) 

or perhaps a subgroup of HI Only the i?SF fermions are massless, 

If the N - = limit is taken with n/N of order one, however, then F loops 

are unsuppressed, and the realization of the G, symmetry advocated in Ref. [ ?5] 

is not excluded by our arguments. 

iii) Georei’s Models 

Georgi [ 161 has recently emphasized that there are cbiral generalizations of 

QCD with nonsimple gauge groups which are quite likely to contain masslcss 
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composite Iermions. Consider, for example, a model with gauge group SU(N) x 

SU(M) and Iett-handcd Weyi fermions that transform under the gauge group as 

the represenbatlon 

M(N.l)+(ii.Lf)+N(l.~). (4.5) 

(‘I&a representation is tree of gauge anomalies.) We will denote these elcmen- 

tery fermion as 

y.‘), fl.7.n~ $$.h 
a (4.6) 

Here o is a fiavor index runcmg from 1 to bf and b is a Bavor index runnmg from 

1 to N: color indices are suppressed. This model respects the grou;, of globaI 

davor symmetries 

G, = SJ(M) x SU(N) xU( l)p , 

where the U(l)* charge assignments are 

Q(F’H.r)) = 1, Q(jTw.Jn) = -1, Q(F:‘.? = 1 
. (4.7) 

It is suggested in Ret. [ 161 that the G, symmetry is unbroken with the G, ano- 

maly conditions satisf%sd by the masstess composite fermion mukiplet 

&= . jr(N.11 F(K.WJ-I’31 , (4.8) 

which transforms as the (M. N)i representation of Gf 

In the N + - limit. with M/N ilxed, the only gauge-singnglet states with 

nonzero U(l)* charge which appear as intermediate states in the leading 

diagrams are the baryon B and the antibaryon a (Fii. 7). Since there is no 

candidate gauge-invariant Lorentz-invariant condensate to break the U( 1)~ sym- 

metry. this symmetry must be unbroken. The U( 1)~ symmetry has an anomaly. 
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t-r @ = NM. Thus. &I NM of the Bd’s must be massless. in agreement with Ref. 

[la]. Some breakdown of the SU(M) x SU(N) symmetry csnnot be excluded by 

our arguments. however. 

Next, consider a model with gauge gmup SU(N) x SU(A4) x SU(N). and left- 

handed Weyl fermions transforming under the gauge group as the representa- 

tion 

M(N. 1.1)’ + (P.M. l)-’ + (1. ,I?, N)’ + M(1. l,i?)-’ (4.9) 

This model respects the ftavor symmetry group 

G, = SU(M)I x su(M)&Q x U( l)JJ , (4.10) 

where the U( i)y charge assignments are indicated as superscripts in (4.9). 

In the N - - Iimit. with bf/ N fixed. there are no gauge%nglet fermion 

states which appear as intermediate states in the leading diagrams, Thus. G, 

must be spontaneously broken to an anomaly-free subgroup. Since U(l)” has no 

anomaly. the obvious choice for the unbmken symmetry is 

H, = w.wv x U(l)“, (4.11) 

as suggested in Ref. [ 161. Indeed. the candidate condensate 

F(N.~.~)F<R.Y.I)~l.R.N)~(l.l.~) 
. P 0 (4.12) 

capable of breaking G, to H,, occurs as en intermediate state in the leading 

diagrams. Rut our arguments do not exclude the possibility that the unbroken 

symmetry is some other anomaly-free subgroup of G, 

It is obvious that this analysis can be extended to models with any number 

of simple gauge groups. supporting the conclusion of Ref. [ 161 that “even linear 

Mooses” iike (4.5) contain massiess composite fermions. while “odd linear 
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Mwses” Iike (4.9) do not. 

m A Model with both a Smetric and metric Tensol: 

Gur next example is an SU(N) gauge theory with left-handed Weyl farmions 

transforming under SU(N) as tha representation 

S+A+2N(P). (4.13) 

‘Ibe number of P’s is chosen to ensure cancellation of the SU(N) gauge anomaly. 

This model respects the group of tivor symmetfies 

G, = su(2N) x U(l)* x U(l), (4.14) 

Under the U(l) symmetries the fermions csrry the charges 

4s = 1 Q, = 1 4 = -1. 
Rs =(N -2) RA = -(N + 2) RF = 0. (4.15) 

The only color-singlet states carrying nonzem U( 1)~ charge which appear in 

the cut planar diagrams of this model are the baryon states 

Bs* = TJF,, 8~ =F.APb, (4.16) 

snd the corresponding antibsryons. Since there is no candidate order parame- 

ter. the U(l)* symmetry cannot be spontaneously broken. And because the 

U(l)p symmetry has an anomaly. tr 4 = -NZ. and the baryons all csrry 4 = -1. 

we know that Ns of the baryons must be massless. It follows that the SU(2K) 

symmetry must be spontaneously broken. because Bs and BA transform as ten- 

sor representations of SU(2N). with more than fl components. 

Our arguments cannot determine precisely how the G, symmetry is real- 

ized, so we will be content with presenting one possibility. The lJ(1)~ symmetry 

csn be spontaneously broken by a condensate with the structure 
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F”S,jA* Fb ; (4.17) 

such a state appears in the cut pl- diagrams. F’urther condensates with the 

flavor quantum numbers of PP can break the SU(2N) llavor symmetry down to 

the SU(N) subgroup such that 2N transforms as N + N. The anomaly conditions 

for 

Hf = SU(N) x U( l)q 

are then satisfied by massless baryons transforming under HJ as 

ClT’+K’. 

(4.18) 

(4.19) 

These massless baryons are presumably a dynamically dete-ed mixture of 

the states Bs and BA. 

5. A Chiral Gauge llmxy with Spcbneously Eiroken Gauge Symmetry 

Our analysis of chiral gauge theories in the l/N expansion has made essen- 

tial use of the assumption of color confkement. This might be regarded as a 

we&mess of the analysis. for one can plaustbly argue that chirai gauge theories 

should not be expected to be conftning in general [4]. One might expect instead, 

that gaugctwnzinglet bilinear condensates form which break the gauge sym- 

metry. Such a scenario is especially credible in view of recent Monte Carlo cal- 

culations [17] that indicate that condensation of fermion pairs can occur at 

surprisingly short distances. Our next example emphasizes that it is not always 

sensible to assume that the gauge interaction is confining. 

The example [12. 131 is an SU(N) gauge theory with left-handed Weyl fer- 

miens transforming under the gauge group as the representation 

s+.z+sl=; (5.1) 
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The number of F’s ia chosen to ensure canceiiation of the SJ(N) gauge anomdy. 

‘Ills model respects a gmup 

G, = SU(8) x U(l)p X U(~)R (5.2) 

of global davor symmetries. The charges of the termions under the U(1) sym- 

metries. which are preserwrd in the presence of instanton% may be chosen to be 

4s = 2 a=-2 4 = - 1, 

Xs=N-2 Ra = -(N + 2) RF = 0. (5.3) 

This model has a potentially interesting feature [ 12. 131; one can construct 

a sequence of “baryon” operators of the form 

Pi,.. sisl. [&, .+ . . . . ,T~,~-, +h.] F,+ 

The operators in this sequence all have the same flavor 3U(3) quantum numbers, 

but carry diderent us charges. Thus. one might expect the massless fer- 

miens in the spectrum of this model to exhibit a sort of generation structure. 

Indeed. solutions to the anomaly conditions can be found for chiraf subgroups of 

Gf such that the same representation of the unbroken nonabelian flavor sym- 

metry OCCUR repeatedly, tagged by a U( 1) quantum number which serves to dis- 

tinguish the “generations” [ 12. 131. 

Unfortunately. such a realization of the flavor symmetry is not allowed in 

the N - - limit. Although these baryons can occur as intermediate states in cut 

planar diagrams. the diagrams require an r loop. which costs a factor gf l/.V 

relative to the leading diagrams. In fact, the large N limit of this model. assum- 

ing confinement. is a theory of an inanile number of noninteracting zero-width 

mesons and glueballs. containing no baryons at all. just like the large N limit of 

WD. 
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Perhaps we should be willing to modify slightly the rules for counting 

powers of l/N, as applied to this model. For if there are order N massless 

baryon species (as required to satisfy the anomaly condition if a chiral subgroup 

of G, is unbroken), all selected from the sequence (5.4). then this dynamicelly 

generated degeneracy could compensate for the formal l/N suppression of the 

F loop, and allow baryon-antibaryon thresholds to occur in the N + - limit. But 

even with this mod.iEcatioa the analysis of the model runs into trouble. 

To appreciate the trouble. we must consider the realization of the U(l)p 

symmetry. The U(l)p charge of a state simply counts the difference between 

the number of upstairs color indices and downstairs color indices carried by the 

state. Thus the U(l)p charge vanishes for any gauge-singlet state which can be 

constructed without the aid of an N-index t symbol. Since states involving the 

L symbol cannot occur in cut planer diagrams (an upstairs index is atways fol- 

lowed by a downstairs index), all gauge-singlet states which appear in cut planar 

dhgrams have vanishing U( 1)~ charge. 

The U(l)s charge has no U( l)a anomaly. but it does have a U( 1)s (“gravlta- 

tional”) anomaly: we have trQ = - BN for the elementary fermions. Since no 

candidate gauge-singlet condensate with a U(l)e charge occurs in the cut planar 

diagrams, the U( 1)~ symmetry cannot be spontaneously broken in the N + - 

limit, if codnement is assumed. On the other hand, the U(l)o symmetry cannot 

be unbroken. because there are no gauge-singlet baryon states with U(l)s 

charge in the N + - limit with which to satisfy the U( 1)s anomaly condition. We 

have reached a contradiction. 

The simplest way out of this difficulty is to give up the assumption of color 

confinement; if the theory is i& a Higgs phase or Coulomb phase, then there can 

be physical states which are not SC(N) singlets. It is, in fact. not at all impiau- 

sible that the gauge symmetry of this model should be spontaneously broken In 
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perturbation theory, there is an attractive interaction in the adjoint channel 

between S aad 2. I! the adjoiat order parameter 

condenses, it can be expected to break the gauge symmetry in a menner which 

admits no “complementary” comlnement interpretation [5. la]. (And indeed, In 

the N + a limit, this channel is ae attractive tn perturbation theory BS the chan- 

nel flF”; it ties !or the distinction of being the & attractive cb.annel.) For 

example, the adjoint order parameter could break SU(N) down to the 

(mnconfining) abelian subgroup U( 1) N-‘: the theory is then in a Coulomb phase. 

This choice might be supported by a “tumbling” picture [4]: the adjoint order 

parameter might first break SU(N) to SU(N-1) x U(1). Then SU(N-1). getting 

strong at a slightly lower scale might become broken to SU(N-2) x U(1). And so 

OP 

But we cannot say, on the basis of our large N arguments, exactly how the 

gauge symmetry is realized in the N + - limit. We can say only that the SU(N) 

gauge interaction must be noncontlning; there are physical states which are not 

SO(N) singlets. 

a cblcluslone 

In Section 5. we described a chiral ga-e theory in which colcr fa.G~ tc be 

confined in the N + = limit. That model diEem from those considered earlier in 

thie paper in that there ia en attractive channel in perturbation theory in which 

a bilinear fermion condensate can Corm that transforms as the adjoint represen- 

tation of the gauge group. If such a condensate actually forms. it can be 

expected to break the gauge symmetry in a manner which admits IYJ co~le- 

mentary couInement interpretation [5.18]. (The condensate presewes a 2~ 
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symmetry by which states can be clastied.) Thus. by appealing to the l/N 

expaneioa we have merely verified by a nonperturbative argument what might 

have been naively expected on the basis a! perturbation theory. 

In the models considered in Sections 3 and 4. however. it is not possible to 

construct any scalar termion bilinear which trans!orme trivially under the 

center ZN at the gauge group. The condensation of a fermion btlinear in one of 

these models should admit a complementary confinement interpretation [5. 181. 

lhue. our assumption that all physical states are color singlets seems sensible, 

and the conclusion that these models contain massless composite fennions car- 

ries some force. 

Much remains to be learned about the nonperturbative dynamics of c&sl 

gauge theories. Present attempts to determine how these theories behave 

involve some guesswork. Rut we have found that formal arguments based on the 

l/N expansion provide reinforcement for what might otherwise be expected 

merely on the grounds of simplicity, and put these expectations on a tlrmer 

b&S. 
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1. Propegators and vertices in the “double-Line” notation 

2. A typical cut through a planar diagram that contributes to the meson two- 

point Cunction. in the “double-line” notation 

3. A typical planar diagram that contributes to a many-meson amplitude iI the 

number of quark &wars is of order N. Solid lines are quarks and wavy lines 

are ghlans. 

4. Typical diagrams contributing to the decay amplitudes of (a) mesons and 

(b) glueballs. The indices 4 b. c denote quark tlavon. 

5. A cut planar diagram in which a “baryon-antibaryon” intermediate state 

appears. 

6. A cut diagram in which the intermediate state B B B’B’ appears. ‘MS 

diagram is nonplarmr and is suppressed by l/h@. 

7. A cut planar diagram of the SU(N) x SU(M) model in which the B Bt inter- 

mediate state appears. Fermions are denoted by solid lines, W(N) gluons 

by wavy lines. and SU(M) gluons by broken lines. 



( 1 ) Propagators: quark i -----c---i 

antiquark i -i 

gluon 1-j 
1 

Vertices: 
ilrj i$f((’ ik(l 

ij ij j j 

(2) 



(3) 

(4) a a 

a 

(a) (b) 
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